

First edition

2022

Schrodingers Box

Advanced DIY Auto Diagnostics & Repair

Preface and Introduction

I would like to start right off the bat by letting you know- this book is actually the work of a viewer on my YouTube Channel named Dr. Ayman Kamar. Ayman is from Egypt, and English is pretty distanced from his primary language but somehow he still managed to put together the bulk of what you have in front of you. I didn't even know he was working on this project- he literally just presented a draft to me out of the blue one day and I didn't even know what to say.

As you can see, this book was a tremendous amount of work and you really have Ayman to thank for it. I only put together the introductions and some descriptions on the diagrams. This is really Ayman's creation and he wanted you to have it as a resource if you need quick refreshers while in the field as opposed to trying to search and view a relevant video from my YouTube channel or Paid Content channel <u>www.schrodingersboxQM.com</u>.

It is important to note that this book is intended as a supplement and review to my video content. You will definitely not be able to just pick up the book, read it cover to cover, and then be able to do advanced engine and electrical diagnostics. The diagrams will look like hieroglyphics at best until you understand the concepts quite well. But if you can understand the diagrams and text that is a great indication you have a good comprehension of the material and the book can be used as a quick review or reference. There are links to the relevant videos for every chapter and it will be necessary to understand the video material to get the most out of the book.

This will be an evolving work in progress so if you identify any corrections that need to be made or would like to request specific content, just let me know and we'll see about implementing those in future editions.

Ayman and I really do hope you enjoy the book and find it useful in cementing your understanding of these complex concepts and greatly elevating your capabilities as an advanced DIY.

Best wishes, Matt Bernstein – Schrodinger`s Box

Advanced DIY Auto Diagnostics & Repair

Contents

	Preface and introduction	1
	Automotive terms	5
1	Basic electrical for beginners	6
1.1	Open circuit	8
1.2	Closed circuit	9
1.3	Ohm`s Law	10
1.4	How to measure voltage	10
1.5	Circuits with load and resistance	14
1.6	Voltage drop test	15
1.7	Parallel Circuits	16
1.8	How to measure a current	19
1.9	Diagnosis problems in 3 wire Sensors circuit	21
1.1() Relays	26
1.11	L Don`t blow you PCM	31
2	Wiring diagram tutorial	34
3	Engine sensors	38
3.1	Mass air flow sensor	38
3.2	Intake Air Temp Sensor	40
3.3	Throttle Position Sensor	41
3.4	Manifold Absolute Pressure Sensor	42
3.5	Oxygen up Stream Sensor	43
3.6	Air fuel ratio sensor	44
3.7	Knock Sensor	45
3.8	Engine coolant temperature sensor	47
3.9	Camshaft position sensor	
	Crankshaft position sensor	48
4	Fuel trims	51
4.1	fuel injection system	51

4.2	Fuel trims defenitions	52
4.3	Relation between O2S1 & LTFT & STFT	53
4.5	Diagnosis by O2S1 & LTFT & STFT	55
5	Engine systems	57
5.1	Air Injection Reaction	57
5.2	The Evaporative Emission System	59
5.3	Fuel pressure regulator	62
5.4	Exhaust Gas Recirculation	64
5.5	The variable valve timing solenoid	66
5.6	Secondary Ignition Waveforms	71
5.7	Engine cooling system	75
5.8	Air Conditioning System	78

Schrodingers Box

AUTOMOTIVE TERMS

Engine Fuel System		CTS	Coolant temp. sensor	
FPS	Fuel pressure sensor	ECT	Engine coolant temperature	
LTFT	Long term fuel trim	AC	Air Conditioning System	
STFT	Short term fuel trim	EVAP	The Evaporative Emission System	
AFR	Air fuel ratio	СОР	Coil- on - Plug Ignition System	
FPR	Fuel pressure regulator	Basic electrical		
F	Engine Air Intake System	DVOM	Digital Volt Ohm Meter	
IAT	Intake air temp. sensor	V	Voltage	
IAC	Idle air control actuator (valve)	I	Current	
MAF	Mass air flow sensor	R	Resistance	
MAP	Manifold absolute pressure sensor	GND	Ground	
TPAP	Throttle plate angular position	GRD	Ground	
TPS	Throttle position sensor	V.	VOLTS	
WOT	Wide open throttle	Amp.	Amperage (current measuring unit)	
VVT	variable valve timing	Omh. Ω	Resistance measuring unit	
	Engine Exhaust system	T°	Temperature	
EGR	Engine Exhaust system Exhaust gas regulator	T°	Temperature Diagnosis	
EGR O2S1	Engine Exhaust system Exhaust gas regulator Oxygen upstream sensor	T° TDC	Temperature Diagnosis top dead centre	
EGR 02S1 02S2	Engine Exhaust system Exhaust gas regulator Oxygen upstream sensor Oxygen downstream sensor	T° TDC B1	Temperature Diagnosis top dead centre Bank 1	
EGR 02S1 02S2 ETS	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensor	T° TDC B1 B2	Temperature Diagnosis top dead centre Bank 1 Bank 2	
EGR O2S1 O2S2 ETS OL	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOP	T° TDC B1 B2 IGN.	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition	
EGR O2S1 O2S2 ETS OL CL	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOP	T° TDC B1 B2 IGN. IGN-SW	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch	
EGR O2S1 O2S2 ETS OL CL	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOPEngine Sensors & systems	T° TDC B1 B2 IGN. IGN-SW DTC	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch diagnostic trouble code	
EGR O2S1 O2S2 ETS OL CL PCM	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOPEngine Sensors & systemsPower train control module	T° TDC B1 B2 IGN. IGN-SW DTC psi	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch diagnostic trouble code Pounds per square inch	
EGR O2S1 O2S2 ETS OL CL PCM ECM	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOPEngine Sensors & systemsPower train control moduleEngine control module	T° TDC B1 B2 IGN. IGN-SW DTC psi PWM	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch diagnostic trouble code Pounds per square inch Pulse-width modulation	
EGR O2S1 O2S2 ETS OL CL PCM ECM CPS	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOPEngine Sensors & systemsPower train control moduleEngine control moduleCamshaft position sensor	T° TDC B1 B2 IGN. IGN-SW DTC psi PWM RPM	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch diagnostic trouble code Pounds per square inch Pulse-width modulation revolutions per minute	
EGR O2S1 O2S2 ETS OL CL PCM ECM ECM CPS CKPS	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOPEngine Sensors & systemsPower train control moduleEngine control moduleCamshaft position sensorCrankshaft position sensor	T° TDC B1 B2 IGN. IGN-SW DTC psi PWM RPM	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch diagnostic trouble code Pounds per square inch Pulse-width modulation revolutions per minute	
EGR O2S1 O2S2 ETS OL CL CL PCM ECM ECM CPS CKPS CMP	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOPEngine Sensors & systemsPower train control moduleEngine control moduleCamshaft position sensorCrankshaft position sensorCamshaft position sensor	T° TDC B1 B2 IGN. IGN-SW DTC psi PWM RPM	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch diagnostic trouble code Pounds per square inch Pulse-width modulation revolutions per minute	
EGR O2S1 O2S2 ETS OL CL CL PCM ECM ECM CPS CKPS CMP CKP	Engine Exhaust systemExhaust gas regulatorOxygen upstream sensorOxygen downstream sensorExhaust temp. sensorOPEN LOOPCLOSED LOOPEngine Sensors & systemsPower train control moduleEngine control moduleCamshaft position sensorCrankshaft position sensorCrankshaft position sensorCrankshaft position sensorCrankshaft position sensor	T° TDC B1 B2 IGN. IGN-SW DTC psi PWM RPM	Temperature Diagnosis top dead centre Bank 1 Bank 2 Ignition Ignition Switch diagnostic trouble code Pounds per square inch Pulse-width modulation revolutions per minute	

SECTION 1

BASIC ELECTRICAL FOR BEGINNERS

This is by far the most important chapter in the book. If you can master basic electrical concepts, you will far exceed even the capabilities of many professional auto mechanics because most people in general have a very hard time understanding electrical. I strongly urge you to do the best you can to understand not only the concepts but also to be able to do some of the math equations as well. Most people just skip over Ohm's Law and all the "math stuff" but mastering this will help you to achieve the ultimate mastery of electrical- the ability to "visualize" it as opposed to following it by memorization or mechanically like a flow chart.

It really helps to visualize basic electrical by analogizing it with water. While there are a few exceptions, 95% of the time thinking about the behavior of water flowing through hoses or how rivers flow will be pretty similar to how electricity works. This will allow you to take a complex concept like Ohm's Law: V=IR (V)oltage equals (I)Amperage times (R)esistance and rather than just calculate it and follow whatever it says, you will be able to actually "see" it at work. In the case of a garden hosethe water faucet is the voltage- the starting pressure. You can imagine if you have good water pressure from the faucet and a really thin hose- we know water would shoot out of the end of the hose really far. This is because inside the thin hose we have high resistance which causes high pressure. But we also know that if you wanted to fill up a glass of water with this thin hose it would take an extra-long time because while the water shoots out impressively, there isn't actually all that much water coming out as opposed to if you just filled the glass right from the faucet without the hose. So we can "see" that increasing (R)esistance

reduces flow (I) amperage. We could also replace the thin hose with a much wider hose and fill a glass of water about the same as directly from the faucet but the water would hardly shoot out of the end of the hose because a wider hose has less resistance which increases the flow of water but pressure is reduced. You can imagine all kinds of combinations like this that would allow you to answer what would happen in various electrical situations. Why does a car with a bad battery not start? Well, it's because it's like having the faucet only turned on just a little bit and expecting it to operate a sprinkler. There isn't enough "pressure" and therefore both flow and resistance are reduced. What if the battery is good but there is a bad starter cable with lots of corrosion? The car still doesn't start but it's not for lack of pressure- remember pressure will be high to the starter motor because of the resistance, but there will be much less flow so just the same way the sprinkler would barely work if you used a really thin hose with it- we know the pressure is high because the hose is thin (increases resistance) but there isn't enough water flowing through the sprinkler to make it operate.

Please watch the basic electrical video links and then when looking at the diagrams in this book- see if it helps to think about water behavior to understand how variables impact electrical performance.

VIDEOS LINK

https://schrodingersboxqm.com/basic-electrical-for-beginners-part-1/

https://schrodingersboxqm.com/basic-electrical-for-beginners-part-2/

https://schrodingersboxqm.com/basic-electrical-for-beginners-part-3/

https://schrodingersboxqm.com/basic-electrical-for-beginners-pt-4-dvom-and-testlights/

https://schrodingersboxqm.com/basic-electrical-for-beginners-pt5-parallel-circuitscemf/

https://schrodingersboxqm.com/basic-electrical-for-beginners-pt6-applying-concepts/

https://schrodingersboxqm.com/basic-electrical-for-beginners-pt7-conclusion/

1.1 - Open circuit

- Any position BEFORE the open switch will equal source voltage because there is no current (flow). Think of water analogythe open switch is "capping" the hose so all pressure is equal before the cap.
- When we calculate voltage drop across the load (the lamp) it is zero because there is no current with switch open.
 - Current is zero Amps anywhere on circuit because there is no electrical flow with open switch. The lamp is not lit in any of these examples because switch it open—no flow.

lamp

12 V.

12 V.

Open circuit

ov.

GND

1.2- Closed circuit (switch closed)

• The voltage BEFORE the load (lamp) equals source voltage but AFTER the load it is zero. The load uses all the voltage no matter its resistance. Lamp is lit because of switch closed causing flow.

 When we calculate voltage drop across the lamp, it is 12V because it is source voltage before the load and 0V after the load.

 Unlike Voltage, CURRENT (amperage or I) will be the same across the ENTIRE circuit. Again, think of water analogywater flow is same before or after a "pinch" in the

hose. You can't have water flow slower or faster within different points of a closed system- it's all the same.

1.5- CIRCUITS WITH LOAD AND RESISTANCE

Resistance before load

- I= 0.5 Amp
- R1 = 10 Ω = RESISTANCE
- $R_2 = 14\Omega = LOAD BULB$

• At R1 RESISTANCE

- V=I R
- V= 0.5 X 10 = 5 VOLT
- Voltage drop = 5 volt
- Voltage after R1 = 7 volt
- At R2 LOAD BULB
- V=I R
- V= 0.5 X 14 = 7 VOLT
- Voltage drop = 7 volt
- Voltage before R2 = 7 volt
- Voltage after R2 = 0 volt

Resistance after load

- I= 0.5 Amp
- $R1 = 14\Omega = LOAD BULB$
- R2 = 10 Ω = RESISTANCE
- At R1 LOAD BULB
- V=I R
- V= 0.5 X 14 = 7 VOLT
- Voltage drop = 7 volt
- Voltage after R1 = 5 volt
- At R2 RESISTANCE
- V=I R
- V= 0.5 X 10 = 5 VOLT
- Voltage drop = 5 volt
- Voltage before R2 = 5 volt
- Voltage after R2 = 0 volt

1.6- Voltage drop test

Video link https://youtu.be/DfLyh43iihM

1 - FIRST WAY

 Check voltage at device positive terminal vs battery negative terminal (Figure 1) and subtract from battery voltage (Figure 2). Difference is voltage drop across positive cable. Remember-DEVICE MUST BE OPERATING! No current flow=no voltage drop.

V1

Batter

V2

device

Device

2- SECOND WAY

- Connect +on device to +on source. This shows voltage drop on positive.
- If shows approximately zero, it means no voltage drop. Look for >.6V on a starter motor.

Schrodinger

 Repeat second way on Negative side to get voltage drop on the negative. Againthe circuit MUST HAVE AMPERAGE FLOW!! Voltage drop will show zero if there is no current flow EVEN IF THERE IS HIGH RESISTANCE!!

1.7- Parallel Circuits

(See basic electrical series on <u>www.schrodingersboxQM.com</u> for walkthrough)

- TWO PARALLEL RESISTANCES CIRCUIT
- example 1
- **R1=100**Ω
- **R2=100**Ω
- Rt = Total resistance

•
$$Rt = \frac{R1 \times R2}{R1 + R2}$$

- $\mathbf{Rt} = \frac{100 \times 100}{100 + 100} = \mathbf{50}\Omega$
- $V = I \times R$

•
$$It = \frac{Vt}{Rt} = \frac{12}{50} = 0.24 Amp.$$

•
$$I1 = \frac{V1}{R1} = \frac{12}{100} = 0.12 Amp.$$

• $I2 = \frac{V2}{R2} = \frac{12}{100} = 0.12 Amp.$

• Example 3

R1= **100**Ω

R2= 25Ω

RL=Resistance at load = 5Ω

Rx = Resistance at R1 & R2 circuit

- $Rx = \frac{R1 \times R2}{R1 + R2}$ Ocingers Box
- $Rx = \frac{100 \times 25}{100 + 25} = 20\Omega$
- $Rt = RL + Rx = 5+20=25\Omega$

• It
$$=\frac{Vt}{Rt}=\frac{12}{25}=0.48$$
 Amp

• Voltage drop at load =I x \mathbf{R} = 0.48 x 5 = 2.4 v.

• IL
$$=\frac{VL}{RL}=\frac{2.4}{5}=0.48$$
 Amp

•
$$I1 = \frac{V1}{R1} = \frac{9.6}{100} = 0.096 Amp.$$

- $I2 = \frac{V2}{R^2} = \frac{9.6}{25} = 0.384 Amp.$
- Ix =I1 + I2 = 0.096 + 0.384 = 0.48 Amp

THREE PARALLEL RESISTANCES CIRCUIT R 1 100 Ω 12 V. 0 v. +12V HH R 2 20 Ω 0 V. 12 V. 50 Ω 0 V. 12 V R 3 • $\frac{1}{Rt} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{?} \dots \dots$ • $\frac{1}{R_t} = \frac{1}{100} + \frac{1}{20} + \frac{1}{50} = 12.5\Omega$ • $I1 = \frac{V1}{R1} = \frac{12}{100} = 0.12 Amp.$ • $I2 = \frac{V2}{R^2} = \frac{12}{20} = 0.6 Amp.$ • $I3 = \frac{V3}{R3} = \frac{12}{50} = 0.24 Amp.$ • It $=\frac{Vt}{Rt}=\frac{12}{12.5}=0.96$ Amp X V = I R $Rt = \frac{R1 \times R2}{R1 + R2}$ $\frac{1}{Rt} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{?} \dots \dots$

1.8 – How to measure current using a basic DVOM.

<u>Attention :</u>

If you are not familiar with all basics for car electricity, don't try to measure current in this way because wrong methods can damage your PCM!! It works by creating a "jumper" wire between point without a load!!

- Turn DVOM Meter to a suitable range of Amperage (green circle)
- Make sure to connect the probe in the specific position of measuring high amperage (red circle)

• After measuring don't forgets you return the probe to the default position to be able to make other measurements correctly without any damage

Here we have the Ammeter (A) correctly placed IN SERIES in the circuit. This can be done either before or after the load (M) because remember current flow is the same everywhere in the circuit, You could just as well connect between the (M) and the ground and get same result. "In Series" means you are "plugged into" EITHER the positive side OR the negative side ONLY! If you connect positive to negative you will have a short circuit!

In the first wrong method we are trying to measure amperage on an open circuit. Reading will be zero because of no flow. The second and third diagrams are also wrong but also DANGEROUS!! We are basically "bypassing" the load with a jumper wire so we create a short circuit and can cause damage. Measuring VOLTAGE will not do this- but measuring AMPERAGE will!!!! This is also why its so important when measuring voltage to be certain your meter is not in amperage configuration!!!

1.9- DIAGNOSIS PROBLEMS IN 3 WIRE SENSORS CIRCUIT

A -NORMAL CIRCUIT

Can be tested by checking the voltage

- At reference = 5 v.
- At signal = 0.5 to 5 v.

B – OPEN CIRCUIT

- Check connectivity at all sides
 Of connection wire from PCM to sensor
- Check voltage at 2 sides of reference = 5 v.
- Check voltage at 2 sides of signal v1 = v2

C – SHORT TO GROUND

- METHOD 1 : disconnect sensor & PCM
- Check cable connectivity to the ground
- If = O.L is normal no short
- If = sound it`s short
- METHOD 2 : disconnect sensor & PCM
- Apply 12v. Test lamp to reference if the light on it's a short
- Apply 12v. Test lamp to Signal if the light on it's a short

D - UNDESIRABLE RESISTANCE (VOLTAGE DROP)

- 1- Check voltage at both sides of the reference IF V1 = V2 it's normal NO VOLT. DROP
- 2- Check voltage at both sides of the signal IF V1 = V2 it's normal NO VOLT.DROP
- 3-Check Mille voltage at both sides of the ground cable If voltage < 100 millivolt it`s normal NO Volt. DROP If voltage > 100 millivolt it`s volt. drop

1.10- Relays

https://www.youtube.com/watch?v=Gg20X-FwGzg&t=28s&ab_channel=SchrodingersBox

https://www.youtube.com/watch?v=fxGZIBNTFPE&t=3s&ab_channel=SchrodingersBox

In a relay regardless of how many pins, there are essentially 2 sides- control and load. The idea is to allow a low current to be able to control a high current which is easier on a switch and also safer. The control side is the low voltage side that the operator controls with a switch- maybe a headlamp switch. This closes the control side circuit and operates a magnet inside the relay that magnetically pulls the high current switch to close and complete circuit to operate the load (headlamp device in this example). Additional pins basically put load to different parts of circuit.

TESTING RELAYS

1.11- Don`t blow your PCM

VIDEOS LINK

https://schrodingersboxqm.com/how-to-test-wires-at-the-pcm/ https://schrodingersboxqm.com/dont-blow-your-pcm-part-1/ https://schrodingersboxqm.com/dont-blow-your-pcm-part-2-2/ https://schrodingersboxqm.com/dont-fry-your-pcm-final-exam/

IMPORTANT RULES

RULE 1:

• Always needs to be a load in a circuit! If there is no load (no resistance) then you have a short circuit.

Rule 2 :

- DVOM in volts mode is almost always safe.
- Amp clamps are available for DVOM and are always safe

Rule 3:

- DVOM continuity tests are almost always safe.
- It isn't safe if we exceed the amount of amperage that the circuit can tolerate.

Rule 4 :

• Led test lights are virtually fail-safe but incandescent ones should be used with caution. An incandescent test light draws 250mA. A LED test light draws only 50mA. If in doubt, use an LED. But Incandescent lights can be useful if you want to operate a circuit with low amperage.

Rule 5 :

- 5v. circuits are generally safe.
- 5v. circuits wires are thin wires
- Sensor signal wires can tolerate up to 5v.

Rule 6 :

- 12v. circuits are always orange flags.
- •

Rule 7:

• DVOM in amps mode should be used with extreme caution It's potentially very dangerous to PCM since causing a short circuit on a PCM controlled switch (transistor) will likely blow it!!!

Rule 8

• Jumper wires are only used on the same side of a circuit (In Series) to bypass a switch or an open. Never jumper positive to negative without a load (such as test light)- ever!!!

Rule 9:

• Never replace a bad PCM until you find out what caused it.

Rule 10

• If you are unsure of a design, research it first but even then you probably still won't be sure so if in doubt, best to not measure it.

SECTION 2

WIRING DIAGRAM TUTORIAL

VIDEOS LINK

https://schrodingersboxqm.com/wiring-diagram-tutorial-part-1/

https://schrodingersboxqm.com/wiring-diagram-tutorial-part-2/

https://schrodingersboxqm.com/wiring-diagram-tutorial-part-3/

https://schrodingersboxqm.com/wiring-diagram-tutorial-pt-4-case-study/

- Begin with the load you suspected then go back step by step
- Mostly power sources in the top and ground in the bottom
- You may find lines that go to the end of the page, on the next page you same lines with the numbering.
- Diagram always at rest state, all switches off except some devices are power all time like alarm system and clock
- The dotted box indicates that there are other components in this box that haven't appeared on this page.
- Load devices must be controlled by a power source or by the ground.
- The most common PCM controls the ground of the relay, and then the relay controls load devices.

sen		Jucs	16	iers	Б	N	
BLACK	BLK	вк	в	PINK	PNK	РК	к
BLUE	BLU	BU	V	PURPLE	PPL	PL	Ρ
BROWN	BRN	BN	Ν	RED	RED	RD	B
CLEAR	CLR	CR	L	TAN	TAN	ΤN	-
DARK BLUE	DK BLU	DK BU	DB	VIOLET	VIO	VI	-
DARK GREEN	DK GRN	DK GN	DG	WHITE	WHT	WT	W
GREEN	GRN	GN	G	YELLOW	YEL	YL	Υ
GRAY	GRY	GY	S	GROUND	GND	GN	G
LIGHT BLUE	LT BLUE	LT BU	-	CONNECTOR			C
LIGHT GREEN	LT GRN	LT GN	-	REFERENCE	BEF		
ORANGE	ORG	OG	0	SKY BLUE		SB	

Colors codes

BLUE / BLACK	L/B	YELLOW / GREEN	Y/G
RED / WHITE	R/W	BLACK / WHITE	B/W
RED / YELLOW	R/Y	WHITE / GREEN	W/G
BLUE / YELLOW	L/Y	WHITE / RED	W/R
BLUE / GREEN	L/G	GREEN / YELLOW	G/Y
BLUE / WHITE	L/W	YELLOW / RED	Y/R
BROWN / WHITE	BR/W	YELLOW / BLACK	Y/B

• Ground locations codes

G1	FRONT CAR	G7	LEFT REAR DOOR
G 2	INSTRUMENTAL PANEL	G 8	RIGHT REAR DOOR
G 3	PASSENGER SIDE	G 9	ROOF
G3	B CENTER PILLAR	G 9	A FRONT PILLAR
G 4	REAR CAR	G 9	C REAR PILLAR
G 5	LEFT FRONT DOOR		
G 6	RIGHT FRONT DOOR		

SECTION 3

ENGINE SENSORS

3.1- Mass air flow sensor (MAF)

VIDEOS LINK

https://www.youtube.com/watch?v=MHsfAXog-FI&t=14s

https://www.youtube.com/watch?v=zxMxPH5jQmw&t=13s

Detect the amount of air entering the engine by Measuring air Flow (gram/second)

- Idle = 2 to 7 g/s
- RPM 2500 = 15 to 25 g/s
- Most models have IAT (Intake air temp sensor) integrated within.

- PCM controls the temperature of the wire by holding the wire at a constant temperature above ambient temperature.
- More air enters leads to a decreased temperature of the wire
- PCM detects changes in current to measure airflow

- Hotwire MAF sensors have two types :
- 1- Analogue = 0 v. To 5 v.

Air
$$\uparrow \longrightarrow$$
 voltage \uparrow WOT = 5 V.

2- **Digital** = 2000 Hz to 6000 Hz

• Measure frequency of change in Volt. from 0 to 5 V (Duty cycle time)

COMMON MAF SENSOR FAULT CODES

- MAF circuit malfunction: P0100
- MAF circuit range/performance: P0101
- MAF circuit low input: P0102
- MAF circuit high input: P0103
- MAF circuit intermittent P0104
- MAF sensor a faulty or contaminated: P0171

3.2- Intake Air Temp Sensor (IAT)

- Video link <u>https://www.youtube.com/watch?v=1pOGSCsU-T8</u>
- Can be tested on the bench by applying heat and measuring the change in resistance As temp increased Resistance decreased
- Can test signal wire for Voltage from 0v. To 5v.
- Temperature $\uparrow \rightarrow R \downarrow \rightarrow V \uparrow$
- Some models have MAF integrated within
- 3 WIRE SENSOR

COMMON IAT SENSOR FAULT CODES

- P0110 Intake Air Temperature Circuit Malfunction Bank 1
- P0111 Intake Air Temperature Circuit Range/Performance Problem Bank 1
- P0112 Intake Air Temperature Circuit Low Input Bank 1
- P0113 Intake Air Temperature Circuit High Input Bank 1
- P0114 Intake Air Temperature Circuit Intermittent Bank 1

3.3- Throttle Position Sensor (TPS)

VIDEOS LINK

https://www.youtube.com/watch?v=FJobCD6y8fk&t=14s

https://www.youtube.com/watch?v=wP1CF4p8FGs

- Used to monitor the air intake of an engine. The sensor is usually located on the butterfly spindle/shaft so that it can directly monitor the position of the throttle.
- Measures angle of the throttle shaft
- More openness leads to more Air leads to more volt.
- Can be tested on the bench by rotating it and measuring the change in resistance between signal & 5v. Reference wire

• Can test signal wire Voltage from 0.5v to 4.5v

3.4- Manifold Absolute Pressure Sensor (MAP)

VIDEOS LINK

https://www.youtube.com/watch?v=xutynSVO0xl https://www.youtube.com/watch?v=mL0B-I6WP6s

3.5- Oxygen up Stream Sensor (02S1)

- PCM oscillates reading from o2s1 between 100mv. and 900mv. give waveform reading
- If the engine is at a stoichiometric ratio it must be oscillating between100mv. & 900mv
- Above 450 mv. It is a rich condition
- Below 450mv. It is a lean condition

3.6- Air fuel ratio sensor (A/F SENSOR)

- Detect Air: Fuel ratio in exhaust then send current (Amperage) signal to PCM for control LTFT &STFT
- Signal from -1.33 (mA) To + 0.41 (mA)

3.7- Knock Sensor (KS)

Videos link

https://schrodingersboxqm.com/knock-sensors-diagnosis-and-understanding-part-1/

https://schrodingersboxqm.com/knock-sensors-diagnosis-and-understanding-part-2/

- "Knocking" occurs when the air-fuel mixture self-ignites prematurely. Sustained knocking causes damage primarily to the cylinder head gasket and cylinder head.
- The knock sensor identifies the high-frequency engine vibrations characteristic of knocking and transmits a signal to the PCM
- PCM controls ignition timing till knock disappeared

2 – Flat response

3.8 – Engine coolant temperature sensor (CTS) (ECT)

Videos link

https://schrodingersboxqm.com/diagnosis-and-understanding-coolant-temp-sensor-part-1/

https://schrodingersboxgm.com/diagnosis-and-understanding-coolant-temp-sensor-part-2/

• FUNCTION :

- 1. Reports engine temperature to PCM
- 2. Fan control
- 3. Temperature gauge
- 4. Important for Sparke to advance control
- 5. Important for Secondary Air Injection System (open\closed loop status)

• FAILURE SYMPTOMS :

- 1. Irrational fan control (over cooling \ heating)
- 2. Failure to enter closed loop.
- 3. Poor fuel economy (rich)
- 4. DTC
- 5. Inaccurate temperature gauge reading
- PCM detects voltage drop in a circuit to calculate the temperature
- Thermistors work by negative temperature coefficient
- When Temp. increased, the resistance decreased led to voltage drop decreased

3.9 - Camshaft position sensor (CPS) Crankshaft position sensor (CKPS)

Videos link

https://schrodingersboxqm.com/cam-and-crank-sensor-basics-part-1/ https://schrodingersboxqm.com/cam-and-crank-sensor-basics-part-2/ A- The camshaft position sensor

- It determines the location of the camshaft and its angle to determine the position of the engine cylinder's piston to be operated.
- To produce the spark when the piston is at the top dead center
- To determine the duration of the injection pulse
- To know the firing order of the engine cylinder
- **B**-Crankshaft position sensor (CKPS)
- Measures the position of the crankshaft.
- It detects the crankshaft position and sends the signal PCM to calculate the injection timing, ignition timing, and engine RPM according to the crankshaft position sensor's signals.

TYPES OF CAMSHAFT & CRANKSHAFT POSITION SENSORS 1 - INDUCTIVE SENSOR

- This type of sensor is composed of a magnetic core and copper conductor winding mounted on an isolated coil that generates an AC voltage sending an alternating current signal to PCM
- 2 Wires sensor Same concept in wheel speed sensor (WSS)
- Continuity through sensor
- 5v or 12v to diagnose any open circuit

2 - HALL EFFECT SENSOR

- Hall-effect sensors generate a digital square wave signal instead of an analog AC signal.
- It consists of a three-pin connector (reference voltage, ground, and signal).
- Hall Effect sensors offer the advantage that they can detect static (non-variable) magnetic fields

TESTING BY OSCILLOSCOPE

ENGINE SENSORS LOCATIONS

SECTION 4 FUEL TRIMS

Link to video

https://www.youtube.com/watch?v=5WnM_NsOtd8 https://www.youtube.com/watch?v=cARO0jZZ4Oc

4.1 – fuel injection system

- PCM receives data from
 - **MAF**(Mass airflow sensor
 - **IAT** (Intake air temperature sensor)
 - **MAP** (Manifold absolute pressure sensor)
 - To detect how much air entered the engine
- **PCM** receives data from **O2S1** (Oxygen upstream sensor 1) or **A/F sensor** (Air fuel ratio sensor) to detect oxygen & hydrocarbons in the exhaust to adjust fuel trims
- The concept of fuel trims is identical in both O2S1 & A/F SENSOR
- **O2S2** (Oxygen downstream sensor 2) to maintain the optimal activity of the catalytic converter
- stoichiometric ratio is Air : Fuel = 14.7 : 1 important for high performance & fuel economy
- **PCM** uses data from sensors to calculate the amount of fuel needed to be added to Stay in Stoichiometric Air Fuel
- Ratio by regulating pulse width of fuel injectors

4.2 -FUEL TRIMS definitions

<u>Short-term fuel trim (STFT %)</u>

Percentage of deviation from a normal amount of fuel added controlled by PCM to maintain stoichiometric ratio AFR

Long-term fuel trim (LTFT %)

Steady-state after the change in STFT % and become new state till a new change in STFT and change again to newer state and so on to keep stoichiometric ratio AFR

Normal range of LTFT & STFT is from -10% to +10%

DTC appeared if LTFT over +25% or less than -25%

4.3 - RELATION BETWEEN 02S1 & LTFT & STFT

In Case a Vacuum leak

⇒Increase unmetered Air ⇒ Lean O2S1

- ⇒ +25% increase STFT to compensate for air from the leak
- \Rightarrow 11 Fuel \Rightarrow 11 LTFT \Rightarrow New steady state of LTFT at +25%
- ⇒ Normal Air fuel ratio⇒ normal O2S1⇒ normal STFT

Stop Vacuum leak

 \Rightarrow stop unmetered Air \Rightarrow rich o2s1

⇒ -25% STFT decrease due to rich condition

 \Rightarrow \Downarrow Fuel \Rightarrow -25% LTFT \Rightarrow New steady state of LTFT at 0%

⇒ Normal Air fuel ratio⇒ normal O2S1⇒ normal STFT

4.5 - DIAGNOSIS BY 02S1 & LTFT & STFT

<u>CODE P0171</u>

Engine run lean bank1

- STFT = 0%
- LTFT = +25%
- O2S1 = 0.1 V.

CAUSES

A- AIR VACUUM LEAK

BY ↑↑ <u>**RPM</u></u> ⇒ ↑↑ Air intake ⇒ ↓↓ % of unmetered air from leak to All air intake ⇒ ↓↓<u>LTFT**</u> TO Normal value
 If ↓↓ <u>**RPM**</u> to IDLE ⇒↑↑ <u>**LTFT**</u> again

 Begin

 Begin

</u>

B- WEAK FUEL PUMP

Increase RPM ⇒ More Need to fuel ⇒ increase LTFT to overcome the weakness of the fuel pump
 Test fuel pump pressure (normal range from 60 psi to 100 psi)

C- MAF DIRTY OR MALFUNCTION

Increase **RPM** = Increase unmetered Air intake = increase **LTFT**

CASE OF V ENGINE

- LTFT1 =+25% & LTFT2 = 0% \Rightarrow CAUSE IS VACUUM LEAK
- LTFT1 = +25% & LTFT2 = +25% \Rightarrow CAUSE MY BE ONE OF A or B or C